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Abstract

In this communication, the dynamics of a flexible cantilevered pipe fitted with a special end-piece is considered, both

theoretically and experimentally. This end-piece can be configured in two ways: (i) with the flow going straight through,

unimpeded, and emerging at the free end as a jet, and (ii) with the straight-through path blocked, so that the flow is

discharged radially from a number of holes perpendicular to the pipe. The dynamics in the first case is similar to that of

a pipe with no end-piece: the system loses stability by flutter via a Hopf bifurcation, though the dynamics becomes more

complex at higher flow velocities. The dynamics in the second case is entirely different: the system remains stable over

the full range of flow velocities considered. This study provides insight into the mechanism of flutter of cantilevered

pipes conveying fluid and the key role played by the mathematically obvious but physically counter-intuitive

compressive follower force generated by the straight-through discharging jet.

& 2010 Elsevier Ltd. All rights reserved.
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1. Background information

It is known, both theoretically and experimentally, that a cantilevered pipe conveying fluid is a nonconservative

system: at low flow velocities it is subject to flow-induced damping, and at a sufficiently high flow velocity it loses

stability by flutter via a Hopf bifurcation. Considering for the present a ‘‘plain pipe’’, with no end-piece at the free end,

the simplest linear form of the equation of motion is (Paı̈doussis, 1998)
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where EI is the flexural rigidity, w the lateral deflection of the pipe, x the axial coordinate, M the mass of the fluid per

unit length, U the dimensional flow velocity, m the mass of the pipe per unit length, and t is time. The dynamics may be

elucidated by considering the work done by the fluid-dynamic forces on the pipe over a period of oscillation T, which
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Fig. 1. (a) The flexible cantilevered pipe fitted with the special end-piece, (b) the unplugged end-piece in the straight-through flow

configuration and (c) the plugged end-piece in the 901 diverted-flow configuration.
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from Eq. (1) is found to be (Paı̈doussis, 1998)
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where the subscript L denotes a quantity evaluated at x=L. For sufficiently small values of U, it is clear that the first term in

Eq. (2) is dominant, and DW is negative. Therefore, the cantilevered pipe remains stable because free motions of the system

are damped. However, for sufficiently large values of U, it is evident from Eq. (2) that DW can be positive if the free-end slope,

(qw/qx)L, and free-end velocity, (qw/qt)L, have opposite signs over most of the oscillation cycle. This dragging, lagging motion is

actually observed during experiments once the critical flow velocity for flutter has been attained (Gregory and Paı̈doussis,

1966b). Thus, for DW40, free motions of the system are amplified, i.e. the cantilevered pipe flutters.

Recalling that q2w/qx2E1/R, where R is the local radius of curvature, it is obvious that the second term in Eq. (1) is a

centrifugal term, while the third is a Coriolis term; as first shown by Benjamin (1961), flutter arises by the interaction of

these two kinds of forces. However, the MU2(q2w/qx2) term may also be viewed as a compressive force,1 associated to

the fluid momentum MU2 emerging from the free end, always tangential to it – thus, a follower tangential compressive

force. This mathematically obvious statement is physically counter-intuitive, as fluid friction actually stretches the pipe,

something that is easily visible in experiments.2 This matter will be elucidated later by the work to be presented.

Analytical solutions to Eq. (1) by a particular method developed by Gregory and Paı̈doussis (1966a) as well as by a

Galerkin method support the conclusions arrived at above via energy considerations. Small flow velocities U induce

damping in all modes of the system, increasing with U; however, at higher U the effect is reversed, and at sufficiently

high U the system becomes unstable by flutter in its second mode via a Hopf bifurcation.

Many variants of the basic system modelled via Eq. (1) have been considered. For example, a vertical pipe conveying

fluid was studied theoretically and experimentally (Paı̈doussis, 1970), such that gravity effects need to be taken into
1If the pipe were subjected to an external tension, T , a term �T ð@2w=@x2Þ would have to be added to the equation of motion; but

here we have something like þT ð@2w=@x2Þ.
2It should be stressed that Eq. (1) was derived via a viscous plug-flow model. The fact that frictional terms do not appear explicitly in

the equation of motion is simply the result of the traction on the pipe and pressure-drop-related forces in the fluid cancelling out exactly

(Benjamin, 1961; Paı̈doussis, 1998).
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account. The dynamical behaviour was found to be similar to that discussed in the foregoing. Bajaj and Sethna (1984)

found that, in general, the flutter can be either planar or rotational (three-dimensional), depending on a parameter b,
defined here in Eq. (6). Also, the case of a vertical cantilevered pipe with an end-mass [see Fig. 1(a)] was studied, mainly

experimentally, by Copeland and Moon (1992), considering also nonlinear effects. It was found that, beyond the

threshold of flutter, higher-order bifurcations arise, with intricate, generally three-dimensional patterns of motion,

eventually leading to chaos. Further work on this problem was conducted, both theoretically and experimentally, by

Paı̈doussis and Semler (1998) and Modarres-Sadeghi et al. (2007).

The system considered here is shown in Fig. 1. It is a vertical cantilevered pipe conveying fluid, fitted with an end-piece at the

free end. As shown in Fig. 1(b), when the end-piece is unplugged, the fluid simply passes straight through;3 alternatively, as

shown in Fig. 1(c), when the end-piece is plugged, the flow emerges through the side-holes, perpendicular to the long axis of the

pipe. The dynamics in these two flow configurations is studied both experimentally and theoretically.
2. Theoretical investigation

2.1. Theoretical model

The linear equation of motion for the system of Fig. 1 is as follows (Paı̈doussis and Issid, 1974; Semler and

Paı̈doussis, 1995; Paı̈doussis and Semler, 1998; Paı̈doussis, 1998):
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where in addition to the parameters in Eq. (1), me is the mass of the end-piece, modelled as a point-mass, T is a mean

tension applied to the pipe, g is the acceleration due to gravity, O is the oscillation frequency measured in rad/s, d(x�L)

is the Dirac delta function, and a and mn are constants in the ad hoc visco-hysteretic model developed to represent the

dissipative forces in the elastomer pipes used in the experiments; specifically, mn is the hysteretic damping coefficient and

a is the Kelvin–Voigt type viscoelastic damping coefficient (Paı̈doussis and Des Trois Maisons, 1971). Eq. (3) may be

rendered dimensionless through the use of the following dimensionless parameters:
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mn is dimensionless ab initio.

The system is discretized following the Galerkin procedure, thereby assuming a solution of the form

Zðx; tÞ ¼
XN

r ¼ 1

frðxÞqrðtÞ; ð7Þ
3Even though the side-holes are not blocked, the fluid is not diverted perpendicularly since resistance through the side-holes is much

higher than that for straight-through flow.
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where fr(x) are the comparison functions, taken here to be the cantilevered beam eigenfunctions, and qr(t) are the

generalized coordinates. Eq. (7) is substituted into Eq. (5) to give

XN

r ¼ 1

fl4rfrqr þ ðan þ mn=oÞl4rfr _qr þ ðu
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Thereafter, Eq. (8) is multiplied by fs(x) and integrated over the domain [0, 1], giving

l4rdsrqr þ ðan þ mn=oÞl4rdsr _qr þ ðu
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Fig. 2. Argand diagram o as a function of u for a flexible cantilevered pipe with b=0.142, g=27.6, Ge=0.196, an ¼ 0:00017, and
mn ¼ 0:03927, obtained using a five-mode Galerkin approximation, for (a) straight-through flow and (b) 901 diverted-flow.



ARTICLE IN PRESS
S. Rinaldi, M.P. Paı̈doussis / Journal of Fluids and Structures 26 (2010) 517–525 521
where
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expressions for these integrals are available [see Paı̈doussis (1998, p. 87)]. Eq. (9) may be written in the compact form

½M� €q þ ½C� _q þ ½K�q¼ 0; ð11Þ

where q={q1, q2, q3,y,qN}
T. The elements of the mass, [M], damping, [C], and stiffness, [K], matrices in Eq. (11) are

determined from Eq. (9) to be

Msr ¼ dsr þ Gefsð1Þfrð1Þ; Csr ¼ ðan þ mn=oÞl4rdsr þ 2b1=2ubsr;

Ksr ¼ l4rdsr þ gbsr þ ½u
2�G�gð1þ GeÞ�csr þ gdsr þ gGefsð1Þfr

0ð1Þ: ð12Þ

2.2. Theoretical results

The system studied in this section is a flexible cantilevered pipe with b=0.142, g=27.6, Ge=0.196, an ¼ 0:00017, and
mn ¼ 0:03927.
Fig. 2(a) presents the Argand diagram, obtained using a five-mode Galerkin approximation, for the three lowest

modes of the system as a function of the dimensionless flow velocity, u, for the unblocked pipe fitted with a four-holed

end-piece. It should be mentioned that the horizontal axis is the real component of the dimensionless complex

frequency, Re(o), which represents the oscillation frequency of the system, while the vertical axis is the imaginary

component of the dimensionless complex frequency, Im(o), which is related to the damping of the system; specifically,

the damping ratio is z=Im(o)/Re(o). Thus, positive values of ImðoÞ give rise to damped oscillations, while negative

values of Im(o) result in amplified oscillations. Fig. 2(a) illustrates that the system loses stability by second-mode flutter

at a critical flow velocity of u1=5.05 and with a critical oscillation frequency of Re(o1)=17.9.

Fig. 2(b) presents the Argand diagram, again obtained using a five-mode Galerkin approximation, for the first three

modes of the blocked pipe as a function of the dimensionless flow velocity, u. In this case, the flow emerges from the four

side-holes of the end-piece. As the straight-through flow is blocked, a tensile force is generated at the end, and hence

throughout the pipe, equal to T ¼MU2; hence, G=u2. As seen in Fig. 2(b), the flow induces damping in all three

modes, increasing with u. There is no reversal of this trend up to u=12 and, from the evidence of this figure, none seems

likely.

The mechanism for the disappearance of flutter in this case becomes obvious by considering the simplified form of

Eq. (3), with dissipative and gravity effects neglected:
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It is clear that, with the straight-through flow blocked, and T ¼MU2, the compressive-centrifugal second term in the

equation vanishes. The only remaining effect of the flow on the pipe is associated with Coriolis forces, which (as in the

freely discharging case) introduce flow-induced damping, ever increasing with increasing flow, as in Fig. 2(b).
3. Experimental investigation

3.1. Experimental apparatus

The experiments were performed with a flexible elastomer pipe and a plastic end-piece with four side-holes

azimuthally at 901 from each other. The fluid conveyed was water. The pipes were cast using a two-part silicone rubber

kit consisting of a base and a curing agent. It should be mentioned that a small elastomer ring was embedded at one end

of the pipe during the casting process in order to facilitate mounting the end-piece onto the pipe during experiments.

Furthermore, the end-piece was designed with a removable plug. Thus, the plugged end-piece allowed for a 901

diversion of the flow at the downstream end of the cantilevered pipe, while an unplugged end-piece allowed the straight-

through passage of the flow (see Fig. 1).

The geometrical and physical properties of the pipe and end-piece are summarized in Table 1. Note that fn and dn are

the natural frequency and log decrement of the pipe in the nth mode. For higher modes, i.e. nZ4, the log decrement of
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the system (needed in the theoretical model) was approximated by dn=0.0516n�0.0144, which is the linear regression

line that best fits the experimental data for the first three modes.

The experimental apparatus is shown in Fig. 3. It consists mainly of (i) a cantilevered pipe vertically hung, over (ii) a

collecting tank, which rests on weighing scales, (iii) a centrifugal pump, which supplies recirculating water from a

reservoir rather than from the mains, (iv) an Omega FMG710 magnetic flowmeter, which measures the volumetric flow

rate, and (v) an Optron system, which is a non-contact electro-optical biaxial displacement follower system that consists

of an optical head and a control unit. The combination of a flow straightener and an accumulator tank, which

attenuates pulsations from the centrifugal pump, ensures that the flow is uniform at the inlet of the pipe. The Optron

system is used, together with the LabVIEW graphical programming software, to acquire a time signal of the motion of

the pipe at a point along its length. The acquired time signals are then analyzed using MATLAB to determine the

oscillation frequencies of the pipe at various flow velocities. Additional information regarding the experimental

apparatus may be found in Paı̈doussis and Semler (1998).

3.2. Experimental results

The dynamical behaviour of the unblocked system is as follows. At low flow velocities, the system experienced an

increase in damping with increasing internal flow, as could be seen by slightly perturbing the pipe. As the flow velocity
Table 1

The geometrical and physical properties of the pipe and end-piece.

Do (m) Di (m) L (m) EI (Nm2) m (kg/m) M (kg/m) b (Dimen.) g (Dimen.) me (kg)

0.0159 0.00635 0.448 7.11� 10�3 0.191 0.0317 0.142 27.6 0.0195

Ge (Dimen.) an (Dimen.) mn (Dimen.) f1 (Hz) f2 (Hz) f3 (Hz) d1 (Dimen.) d2 (Dimen.) d3 (Dimen.)

0.196 0.00017 0.03927 1.07 4.10 10.2 0.0346 0.0937 0.138

Dimen.=dimensionless.

Fig. 3. Schematic of the experimental apparatus (Paı̈doussis and Semler, 1998).
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Table 2

The theoretical and experimental critical flow velocities and oscillation frequencies for the straight-through flow configuration, where

the multiplicative factor to switch from ucr to Ucr in m/s is 1.06 and that to switch from Re(ocr) to fcr in Hz is 0.142.

Theory Experiment

ucr 5.05 5.46

Re(ocr) 17.9 16.3
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was increased further, the pipe experienced a decrease in damping, which eventually became negative via a Hopf

bifurcation. This gave rise to limit-cycle motion, involving two-dimensional, planar, second beam-mode flutter, with a

strong travelling-wave component. As the flow was increased further, a second bifurcation was encountered,

characterized by two-dimensional, planar, fixed-node type flutter involving third beam-mode shape oscillations, and a

fixed node at approximately mid-length, and with a higher oscillation frequency. At even higher flows, the oscillation

frequency increased further, and more complex vibrational modes were observed. Eventually, the motion became

chaotic, and impacting occurred with the walls of the collecting tank; at this point, the experiment was discontinued.

It was remarked that the cantilevered pipe exhibited three-dimensional, transient behaviour just prior to the onset of the

first and second bifurcations for only brief periods of time; during this time, the system searched for and located

its preferred two-dimensional plane of motion for the planar limit-cycle flutter. The reader is referred to Electronic

Annex 1 for a video clip showing the dynamics of the unblocked pipe.

In contrast, the dynamical behaviour of a cantilevered pipe with a plugged end-piece was entirely different. For this

system, the pipe did not display any oscillatory motion, or any other instability for that matter, as predicted. Indeed, the

system remained stable over the full flow range attainable. Experiments with an end-piece with eight side-holes

azimuthally at 451 to each other yielded sensibly the same results. The reader is referred to Electronic Annex 2 for a

video clip showing the dynamics of the blocked pipe.
4. Comparison of experiment to theory and nonlinear behaviour

The experimental threshold for flutter of the cantilevered pipe fitted with an unplugged end-piece is compared with

prediction of linear theory obtained by solving Eq. (5). However, as discussed in Section 3.2, there is a rich experimental

post-flutter dynamical behaviour; this was explored by means of the nonlinear theoretical model of Wadham-Gagnon

et al. (2007); see also Modarres-Sadeghi et al. (2007).

The theoretical and experimental flutter threshold values of the dimensionless critical flow velocity, ucr, and the

dimensionless critical oscillation frequency, Re(ocr), are compared in Table 2. Moreover, a bifurcation diagram

obtained by the nonlinear theory with six Galerkin modes is given in Fig. 4,4 showing the evolution of the dimensionless

free-end displacement, Z(1), with the dimensionless flow velocity, u, for system parameters corresponding to those of the

experimental system.

From Fig. 4, it is seen that the system is stable for uou1=5.0, and loses stability by travelling-wave type flutter at

u1E5.0. Fixed-node type flutter of smaller amplitude then develops at u2E6.8, and the motion of the system becomes

more complex for u349.0. The corresponding experimental values are u1=5.46 and u2=8.53, where u1 is in reasonably

good agreement with theory, but not u2. The reason for this latter is most probably that the rotational inertia of the end-

mass was not taken into account in the theoretical model. As the post-flutter nonlinear characteristics of the system

were not the primary purpose of this Communication, the matter was not pursued further.

In the case of the blocked straight-through path, there is no bifurcation at all, the system remaining stable at its

equilibrium state. Thus, nonlinear analysis here would be meaningless.
5. Conclusion

The dynamics of a flexible cantilevered pipe discharging water and fitted with a special end-piece has been

investigated, both theoretically and experimentally. The end-piece may be used (i) in its ‘‘unblocked’’ configuration,

allowing fluid to be discharged freely, straight through; or (ii) in the ‘‘blocked’’ mode, in which case the flow exits via
4The first two bifurcations with four Galerkin modes occur at the same u.



ARTICLE IN PRESS

1

−1
4 5 6

u
7 8 9 10

0.8

−0.8

0.6

−0.6

0.4

−0.4

0.2

−0.2

0�
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N=6 modes for the straight-through flow configuration.
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side-holes, perpendicular to the pipe axis. In case (i), the system loses stability by flutter at high enough flow velocity,

and then develops more complex oscillatory patterns at higher flow. In case (ii), the system remains inert and stable over

the full range of attainable flow velocities.

It is shown that the absence of flutter in case (ii) is related to the generation of a tensile force by the blocked straight-

through flow-path, which exactly cancels the centrifugal-compressive force which is essential in the generation of flutter.

Thus, the compression due to the exiting jet becomes physically easy to grasp. In this regard, the plugged end-piece may

be viewed as an effective stabilizing device.

The post-flutter nonlinear behaviour of the system in case (i) is compared with nonlinear theory and is found to be in

qualitatively good agreement with the observed behaviour (though not so good quantitatively).

A more detailed account of the theory and the experimental work may be found in Rinaldi (2009).
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